Summer 2018 – Part 2

Our 2018 summer research internship has come to the finish line! In the last 8 weeks, the Proving Ground research team developed design uses cases for multi-objective evolutionary solvers and  created game engine prototypes to visualize complex spatial databases. The team learned a lot this summer and we wish Maren and Ian all the best … Continue reading Summer 2018 – Part 2

New Machine Learning Examples with LunchBoxML

Last year, we introduced LunchBoxML - a machine learning (ML) plugin for Grasshopper and Dynamo that uses the Accord framework. LunchBoxML introduces several generalized supervised and unsupervised learning tools to visual programming including regression analysis, neural networks, and mixture models. We have published a few new examples to the Bitbucket repository to demonstrate the application … Continue reading New Machine Learning Examples with LunchBoxML

Transform your Building Information into a Big Data Resource

We have recently created a database framework called Minecart which harvests data from building information sources such as Revit and IFC formats. Our database is designed to represent building information as a scalable relational structure connecting data across multiple projects, documents, elements, and parameters.

LunchBoxML for Dynamo

This past summer, we released LunchBoxML for Grasshopper. Many have asked if we would publish a version for Dynamo. Ask no more! As of the last update, we have included the first version of LunchBoxML for Dynamo! By having this capability in Dynamo, users are able to start leveraging data from Revit to feed the … Continue reading LunchBoxML for Dynamo